2,312 research outputs found

    Thermodynamics of Quasi-Topological Cosmology

    Get PDF
    In this paper, we study thermodynamical properties of the apparent horizon in a universe governed by quasi-topological gravity. Our aim is twofold. First, by using the variational method we derive the general form of Friedmann equation in quasi-topological gravity. Then, by applying the first law of thermodynamics on the apparent horizon, after using the entropy expression associated with the black hole horizon in quasi-topological gravity, and replacing the horizon radius, r+r_{+}, with the apparent horizon radius, r~A\tilde{r}_{A}, we derive the corresponding Friedmann equation in quasi-topological gravity. We find that these two different approaches yield the same result which show the profound connection between the first law of thermodynamics and the gravitational field equations of quasi-topological gravity. We also study the validity of the generalized second law of thermodynamics in quasi-topological cosmology. We find that, with the assumption of the local equilibrium hypothesis, the generalized second law of thermodynamics is fulfilled for the universe enveloped by the apparent horizon for the late time cosmology.Comment: 8 pages, no figure, Phys. Lett B, in press (2013

    The decay of singlet scalar dark matter to unparticle and photon

    Full text link
    We consider the unparticle physics introduced by Georgi and show that if the standard model is extended to include a singlet scalar as a dark matter candidate, there is a channel which leads to its decay to photon and unparticle. We calculate the decay rate for this new channel and find a lower bound on unparticle physics scale by demanding the stability of this candidate of the dark matter.Comment: 5 page
    • …
    corecore